Theoretical analysis and
experimental verification on the
static properties of externally
pressurized air-bearing pads with

load compensation

P.L. Holster and J.A.H. Jacobs

Load compensation can lead to externally pressurized bearings with infinite
stiffness at the operating conditions. Calculations and experiments carried
out on these bearings are discussed in this paper for two types of circular
bearing pads with compliant surfaces. The mathematics is amply treated in
appendices, and the numerical procedures are illustrated in diagrams. The

experimental set-up is explained.
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Introduction

Today externally pressurized circular air-bearing pads are
used successfully in several kinds of machines, such as
grinding machines with aerostatic guideways and journals
with thrust bearings. For many applications the stiffness of
the bearing is an important characteristic. Although the
stiffness of an aerostatic bearing is sufficient in most cases,
there is a demand for bearings with still higher stiffnesses.

Infinite stiffnesses or even negative sliffness!;es have proved

possible by using bearings with load compensation by
means of a compliant bearing surface. At the 1971 Gas
Bearing Symposium Kilmister! presented such a bearing
pad (Fig 1(a)), and at the 1974 Symposium Rowe and
Kilmister? gave an incompressible analysis thereof. Blondeel,
Snoeys and Devrieze® described an approximate design
calculation for similar bearing pads (Fig 1(b)) at the 1976
Gas Bearing Symposium. Also, Hayashi® gave an investiga-
tion of such a bearing at the 1981 Symposium in which the
compressibility at the inlet orifice is neglected. Our
colleagues Franken and Hagen patented such a bearing
(Fig 1(c)) with a pivoting membrane® . Recently also,
Zeiss® applied for a patent for such a bearing. The bearing
type with pivoting membrane (Fig 1(c)) only works
satisfactorily at a rather high supply pressure of more than
6 bar and an outer diameter of 60 mm or more.

Our aim was to design such a bearing with the same infinite
stiffness at a lower supply pressure and a smaller outer
diameter. Therefore, it was necessary to investigate the
influence of several parameters and to predict the load-
carrying capacity versus gap height variation by means of
calculations.

An additional difficulty for this kind of calculation is the
flexibility of the bearing surface. The deflection of the
membrane depends on the pressure distribution in the
bearing gap, while that pressure distribution is influenced
by the geometry of the bearing gap. The interaction of
these phenomena can be dealt with numerically by solving
the equations with the relaxation method.
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Also the flow through the inlet restrictor must be ddequ(l(e]y
described and gives rise to other iterations.

In this paper a solution method is derived that enables us to
write a Fortran program to be used by designers. Specific
parts of that program are illustrated by diagrams based

on the M. Jackson method”. Below the M. Jackson blocks
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Fig 1 (a) Kilmister-type bearing pad; (b) Leuven type;
(c) Philips type
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reference is made to other diagrams (at subroutines,
indicated by double lines) or to formulae. Finally, some
calculation results are compared with measurements.

General description of air bearings with a
compliant surface

Bearing with a rigid non-parallel gap shape

The operation of a circular bearing pad, with a rigid non-
parallel surface will be discussed briefly first. Air with a
supply pressure pq is fed through an inlet restrictor into the
bearing gap. The pressure distribution in the bearing gap
depends on the shape of the gap (for instance, conical). For
simple gap shapes with constant conicity one can derive an

Notation

a relaxation factor

Cai  discharge coefficient inherent aperture
Cgo  orifice discharge coefficient

D; flexural rigidity inner membrane, Nm
Dy flexural rigidity outer membrane, Nm

f constant factor = 0.98

H (i) nodal gap height, m

H¢(i) calculated nodal membrane deflection, m
Hg(i) nodal gap geometry, m

H bearing displacement, m

Hpin  minimum gap height, m

H;j thickness of inner membrane, m
H, thickness of outer membrane, m
i index nodal points

Iy DO variable start loop
Int  see Eq(Al10)

iy index pivot point

Iy DO variable load loop

K see Eq (B7)

Mgy,  mass flow in the gap, kg/s

n index outer nodal point
P (i) nodal pressure, Pa
P, ambient pressure, Pa

P.(i) calculated P (i), Pa

P;,  gapentrance pressure, Pa

P,  orifice downstream pressure, Pa
P, supply pressure, Pa

Pu, theoretical inlet restrictor downstream pressure,
Pa

R (i) nodal radius, m

Ry gas constant, J/(kg K)
Ry pivot radius, m

T absolute temperature, K
W load-carrying capacity, N
Wi W due to Py, < Pjp, N
W, W due to inlet hole, N
W, calculated W, N

Wmax ultimate load, N

AW  step in load loop, N

AH  relaxation step in bearing displacement, m
n dynamic viscosity, Pas

v Poisson’s ratio
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analytical equation for the flow—pressure relationship. In
Appendix A the algorithm for the calculation of gap flow
through an arbitrary gap shape is given. The pressure drop
across the restrictor depends on the compensation method.
If the orifice aperture is much smaller than the annular
aperture at the circumference of the orifice, the bearing is
orifice-compensated. In the other case the bearing is
inherently compensated.

In our case, gap heights vary from 1 um to approximately
30 pm and orifice diameters are about 0.5 mm, so we could
consider inherent compensation for the ease of calculation.
To achieve better accuracy and to enlarge the applicability
of the calculation results we choose to consider the orifice
aperture and the inherent aperture to be arranged in series.
The calculation of the flow through these two restrictors is
elaborated in Appendix B.

Bearing with a pivoting membrane

A schematical design of this bearing with a pivoting
membrane is shown in Fig 1(c). During fabrication the
membrane can be ground flat with a certain over-pressure
in the chamber. At atmospheric conditions the membrane
will show a more or less conical form. It is also possible to
grind the membrane conical without an over-pressure in the
chamber.

A load-carrying capacity versus gap height characteristic for
this bearing is shown in Fig 2. The deflection of the
membrane is illustrated too. The dashed line will appear
during measurements and represents the situation where the
centre of the membrane touches the opposite surface, as
will be obvious from point d in figure 2.

The pressure in the chamber acting upon the membrane will
not vary during operation, so the variation in bending of
the membrane depends only on the variation of the
pressure distribution in the bearing gap. For a supply
pressure higher than the grinding pressure and a low external
load, the inner membrane will bend downwards. Then

there is a large pressure drop across the restrictor. When the
external load increases, the gap height tends to decrease and
so does the air mass flow, resulting in a decreased pressure
drop across the restrictor, This yields larger pressures in the
gap, resulting in a higher load-carrying capacity. Moreover,
the membrane is forced to a more convergent gap shape
that additionally enlarges the load-carrying capacity. Owing
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Fig 2 Typical bearing characteristics of the Philips-type
bearing pad, The deflection of the membrane at positions a,
b and c is drawn at the right-hand side of the figure
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Fig 3 Kilmister-type bearing pad with a convergent outer
region
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Fig 4 Pressure profile of a circular bearing pad. Through the
inlet restrictor the pressure drops from supply pressure, Pg,
to pressure Pq, behind the orifice aperture, and thereafter
to Py, after the inherent aperture. In the bearing gap a
pressure recovery to Py, takes place

to the pivot joint the outer edge of the membrane will be
bent downwards, which intensifies the effect once more.
So one can imagine that the load-carrying capacity is
increased without decreasing the gap height, so infinite
stiffness is accomplished.

In the case of inherent compensation, the deflection of the
membrane also changes the inlet aperture in an advantageous
way. The latter effect on its own is capable of generating
infinite stiffness.

Bearing with a clamped membrane

A schematical layout of this bearing with a clamped
membrane is shown in figure 1(a). Kilmister has already
proved that this type of load compensation can lead to
bearings with infinite or even negative stiffness at operating
conditions’. A small improvement is given in Fig 3 where
the conical outer region will result in a higher maximum
load-carrying capacity. During fabrication the bearing is
ground conical with or without a certain over-pressure in
the chamber.

In the same way as for the previous bearing type the inner
membrane will bend inwards when the external load
increases. Now the gap shape remains almost the same
because of the rigid outer region. So in this bearing it is
the variation of inherent inlet aperture that is mainly
responsible for the gain in stiffness.
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Calculation method

. Pressure distribution

Since the relaxation method of calculation is used the shape
of the gap is given during the calculation of the pressure
profile. Because of the axisymmetry (no tilt) the calculations
are one-dimensional. The gap shape is approximated by
taking several nodes in the radial direction and assuming a
conical gap shape between these nodes.

For isothermal compressible flow in Appendix A it is
derived that for each segment between the nodes (7) and
(i+1) one can express the pressure decay by (Eq.(A9)):

P? (i) - P? (it1) = (120 Rg T/m) Mgap Int (H (i),
R (i), H (i+1), R (i+1))

Because the mass flow, Mgy, is a constant, one can simply
add all the above equations to find (see Eq (A11)):

-1
P, - P2 = (120 Ry T/m) Mgap :51 Int (i)

The ambient pressure, Py, at the outer radius is used as
boundary condition. On the other hand the pressure Pj, =
P(1)at R (1) is determined by equating the mass flow
through the bearing gap and the mass flow through the
inlet restrictor.

The flow through the inlet restriction, composed of a
(fixed) orifice and an inherent aperture arranged in series,
is described in Appendix B. In Fig 4 one can find the
various pressures existing in the inlet restrictor. For the
orifice flow (pressure drop from Py to Py;) we use the
compressible Bernouilli equation with a constant discharge
coefficient Cgqo = 0.8. For the inherent aperture (with a
pressure drop from Pg; to Py, ) we used the same equation
with Cgj = 0.9. But then a pressure recovery to Pj, takes
place as described by the K factor (actual pressure drop
divided by theoretical pressure drop). For the value of the
K factor we have used the empirical relationship as presented
by McCabe, Elrod and others® at the 1969 Gas Bearing

PRESS
W P,
1<j<n
GAP RESTR. o CALC
FLOW FLOW . W,
(Fig. 17) {Fig. 19) (Eq (A9))
i DO1GAF
P(1) =Py, I ot | W, w,
(Eq (1})
Yii)
(Eq (2))

Fig 5 Diagram of the method for calculating load-carrying
capacity
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Symposium, where X is related to the Reynolds number
only.

Load-carrying capacity

Having determined the pressure after the restrictor, Py,
and the mass flow through the gap, we can start to calculate
the gap pressures P. (1, . . ., n) at the nodal points R (1,
..., n)successively. Integration of the pressure distribution
over the entire surface gives the load capacity. Fig 5
illustrates the way of calculation, explained below.

For the integration we use a NAG-subroutine called
DOI1GAF that integrates a function, Y, which is specified
numerically at nodes over the whole of its specified area.
So the solution, named W, equals
> R®)
O (T M
We choose nodes at intervals of R (n)/10 starting with R (1)
at the inlet hole. An extra node R (2) at R (1)/fis chosen
to imitate the pressure depression effect. The value of f can
be chosen but is normally set to 0.98. Another extra node
R (n-1) at f R (n) assures that at very small gap heights the
pressure is still adequately approximated.

The calculation of load-carrying capacity consists of three
stages. First we use Eq (1) with P (1) = Pjp, to avoid a sharp
change in the pressure gradient, with

Y@ =2rR@{P(®) ()

Then a correction W, is performed to take the pressure
depression into account, and finally the correction W,
makes allowance for the pressure inside the inlet restrictor.

Deflection of the membrane

For a description of the deflection calculations we start
with the bearing type with a pivoting membrane. On
account of the axisymmetry a model of half the diameter
suffices.

We start to calculate the deflections by means of the FEM
package GIFTS. The mesh generated by the GIFTS pre-
processor consists of axisymmetric 4-node elements, or in
GIFTS terms QA4 elements®. The total mesh is shown in
Fig 6. A simpler geometry is obtained by modelling the
pivoting area by a pivot point fixed in the radial direction,
as shown in Fig 7.

In Table 1 the calculated deflection at the nodes R (1) and
R (n) is given for two models with the same loading case.
In this loading case the inner membrane is under a pressure
of 5.5 bar. Comparing the calculated values with the

Table 1 Comparison of FEM-calculated and measured
membrane deflections at the centre, R (1), and at the
periphery, R (n)

Deflection, um

Nodes at radius R (1) R (n)
Model of Fig 6 14.44 3.573
Model of Fig 7 14.88 4.185
Measured values 16. 4.0

R (n) =30 mm, Ry =229 m, H; =23 mm, Hg = 1.8 mm,
P =505 bar
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Fig 6 Mesh partition used in the FEM calculation of the
deflection of the full bearing pad with pivot

1 !
R(1) RIi) A, R(n)

Fig 7 Mesh partition used in the FEM calculation of the
deflection (Fig 6)

measured ones we see that the simpler model of Fig 7
applies equally well as the model of Fig 6.

Encouraged by this result and to save computer time, the
possibility of an analytical procedure is investigated. For
these calculations the membrane is bisected into the inner
part (subscript i) and the outer part (subscript o). Consider-
ing the membrane in a bent situation, the interaction
between both parts is determined by the forces and
moments as illustrated in Fig 25. An extra complication
arises because of the different thicknesses Hj and H, of the
inner and outer membranes.

For the analytical deflection calculations the radius is
divided into segments with the same nodes as used for the
pressure calculation. The pressure distribution in the gap is
approximated by a linear interpolation between the
prescribed pressures at the nodes. In Appendices C and D
the mathematics of the above procedure is given.

To check this analytical model we compare the results
shown in Table 1. The same loading case for the analytical
model gives a deflection of 13.4 um at R (1) and 3.1 um at
R (n). So the analytical model corresponds as well with the
measured deflections as the FEM does.

The principle of the deflection calculations for the bearing
with clamped inner membrane (Fig 1) is the same. Because
only one inner membrane with simple boundary conditions
is involved the calculations have been somewhat simplified.
A more detailed description can be found in Appendix C.

Coupling of pressure and deflection calculations

In a static situation the interaction between pressure
distribution and deflection of the membrane must be in
equilibrium. The usual iteration method to solve this
problem is based on the so-called relaxation method. Even
for very low values of the Young’s modulus this method
shows good convergence in our calculation.
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LOOP
5
INIT
; STOP
Hy (i) 2
1<j<n 1</, <Ny
INIT 2H =
PUi) Hy + AH,
? ” X 5FIESULT
RELAX
GOTO 2
| [1<i<n
*
DEFLEC =
H. Hg + H, + H
(Fig. 21)
¥ H<H
o
Hee = H TEST
F |
[Frp >0
a
CALC
We; P
' Hemin =<0
PRESS >
WP, GOTO 5
(Fig. B)
TEST
Tc—ap__—]Pca&P
o Drw iy o

(Eq (3))
Fig 8 Simplified diagram of the calculation of load-carrying
capacity, W, at prescribed bearing displacements, H;. The
GOTO statements are used for clarity here but not in the
actual program

Normally, the load capacity is calculated for a given gap
height. This method gives problems for a bearing with
negative stiffness. As one can see in Fig 2 two different
loads are possible at the same gap height. We found that our
program always iterates to the highest load capacity even if
the initial guess for the pressure distribution is in the
neighbourhood of the other solution. Therefore, it is
important to look for a procedure where the gap height can
be found from a prescribed load capacity. First we discuss
the normal procedure,

Load capacity for a prescribed gap height

The calculation method is illustrated in Fig 8. The layout of
this figure is adapted to facilitate comparison with Fig 9.
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LOOP
0<t, <l
1 115
INIT *
Hy () fo =1y +1 STOP
1<i<n 1< <N,
* *
INIT INIT 2w =
W:H =0 P(i) W— AW
(Eq (5)) —_]
3 | |e
£ RESULT
RELAX
- GOTO 2
| [1<i<n
* 4 -
DEFLEC H= H,
H. Hy + H + H, RELAX
Fig. C.1
’ H < Hoin
Hein = H TEST
I Hmin >0 Hmin <0
-] o
CALC TEST
We; Pe first W
I la=Tq |.-'W #*/
PRFSS TEST GOTO 1 GOTO S
We; Pe
(Fig. 5)
W, ~Ww We#W
o [+]
(Eq (4))
P. ~ P.=P
1] (<]
P=P+
GOTO 6 «P.-p [T GOTO 3
(Eq (3))

Fig 9 Diagram of the calculation of bearing displacement,
Hy, at prescribed load-carrying capacities, W

The iteration starts with an initial guess for the pressures

at the nodes. From this estimation of the pressure distribu-
tion the nodal deflections H, (1, .. ., n) of the membrane
are calculated (in subroutine DEFLEC). In the array

Hg (1, ..., n) the gap geometry as obtained by the grinding
process plus the deflection from the supply pressure in the
chamber and ambient pressure in the gap are stored. Here-
after, the gap heights at all nodes can be determined by
adding H (1,...,n)and Hy (1, ..., n) to the bearing
displacement, H}. Simultaneously, the minimum value of
the gap height, Hpin, is derived. Then a test is performed to
investigate whether a negative gap height occurs. If so, the
execution of the program is stopped. With this gap geometry
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Fig 10 Measurement set-up: 1, load platform for mass
loading; 2, air bearing for frictionless guidance; 3, chamber
for pressure (vacuum) loading; 4, opposing surface for the
bearing to be measured; 5, bearing to be measured; 6, dis-
placement transducers; 7, force transducer; 8, partial
spherical bearing for alignment

fixed the pressure distribution, P (1, ..., n), can be
calculated with subroutine PRESS that also calculates the
load-carrying capacity, W;. Further on, the calculated
pressure distribution is compared with the initial guessed
distribution P (1, . . ., n). From the difference between
these pressures a new estimation of the pressure distribution
P(1,...,n)can be made. This estimation is made by
relaxation of the pressure, in equation form:

P@=P @) +a{P:(i)-P @)} 3)
where / is nodal point number and g is relaxation factor.

The iteration is continued until the pressures are in agree-
ment. The whole action is repeated N}, times for different
values of f, the actual displacement of the bearing pad.

Gap height for a prescribed load capacity
The calculation method is outlined in Fig 9.

This iteration process also starts with an initial guess of the
pressure distribution P(1, .. ., n). The calculated deflection
H (1, ..., n)increased with H, (1, ..., n) gives the shape
of the gap. The aim now is to find a displacement, Hj, so
that the calculated load capacity W, corresponds with the
prescribed load capacity W. The pressure calculations are
carried out with an estimated H) followed by a test of the
load capacity. If the calculated load capacity is higher than
the desired load capacity the calculation is repeated with an
increased value for . In the other case the value for Hj is
decreased. This is also a kind of relaxation, governed by

Hy= Hi+ AH (We - W)W @)

This procedure is continued until W, corresponds with W.
If this criterion is satisfied then the differences between the
pressures P. (1, ...,m)and P(1,..., n)are checked in
the same way as described above.

TRIBOLOGY international

An additional difficulty arises as to how high a load capacity
is possible for the bearing pad under consideration. The
ultimate maximum load-carrying capacity, Wpax., is given
by

Wnax = TR (")2 (Ps - Py)

Now we start at a prescribed W = W,,,, - AW and check
whether a negative gap height occurs. If so, we decrease W
with AW and repeat the attempt to find a solution. After
the first solution is found, it is no longer true that /5 = Iy
and the actual calculation can start. If a negative gap height
occurs again then the computing has to be stopped because
then we have arrived near to point d from figure 2.

As one can see in Fig 9 the procedure is almost the same as
that in Fig 8, except that two extra loops are introduced.

Experiments
Load—displacement measurements

With the apparatus schematically shown in Fig 10 it is
possible to measure the load—displacement characteristic.
The apparatus consists of an axis (1) with externally
pressurized bearings (2). By means of the pressure chamber
(3) an external load can be applied to the bearing pad.
This load is measured with a Kistler piezoelectric force
transducer (7). The signal from the transducer is fed to a
charge amplifier which can be used for static and dynamic
measurements as well. For the dynamic measurements this
apparatus has the nice feature that mass and external load
can be varied independently. The experiments discussed in
this report are all steady-state measurements. Because one
can connect the pressure chamber (3) to a vacuum, even
zero load is possible to achieve.

The air gap is measured by two inductive displacement
transducers (6). To be able to position both bearing surfaces
parallel to each other a partial spherical air bearing (8) is
used. The positioning can be done by pushing the opposing
surfaces against each other with pressurized air supplied to
the spherical bearing. Afterwards that air supply is changed
over to a vacuum connection to fix the parallel adjustment.
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Fig 11 Modified measurement set-up for pressure distribu-
tion: a plate (1) with two holes (2] thar are connected to
pressure gauges can be displaced over the bearing pad to be
measured (3); that displacement is monitored by a micron
spindle (4) prestressed by a leaf spring (5 ) that also prevents
rotation
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Fig 12 Calculated and measured values of load and flow for
a circular rigid bearing pad with a conical gap (Dg = 60 mm,
D; =0.53 mm, T; = 13 um, Py = 6 bar)

The signals coming from the charge amplifier and displace-
ment transducers are connected to an X—Y recorder, so
that the load displacement characteristic can be recorded
continuously.

Flow measurements

The flow measurements are carried out with a Tylan mass-
flow meter. These flow meters are supplied in a number of
standard flow ranges. We used two flow meters with ranges
of 0.02—1 sl/min and 0.15—5 sl/min.

The method of operation is based on the fact that the
temperature rise of a gas is a function of the amount of
heat added, the mass-flow rate and gas properties. The
amount of heat is measured and transformed to a linear
output signal of 0—5 V dc over the selected flow range.

The response is rather slow (more than 6 s), so the flow
measurements must be taken step by step, and no
continuous recording is possible.

Pressure distribution measurements

To measure the pressure distribution we modified the
measuring set-up of Fig 10 to that of Fig 11. The basic idea
was to measure the pressure via a little hole (connected to a
pressure gauge), that can radially displace over the bearing
pad to be investigated.

To halve the stroke we used two holes drilled into the plate
the outer radius apart. The plate can be displaced by a
microspindle prestressed by a leafspring. As one sees from
Fig 11 the plate moves between two air bearing pads, the
lower one of them to be measured.
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Comparison of calculation and experiments
Bearing with a rigid non-parallel gap shape

These bearings are measured because they reveal valuable
data (discharge coefficients Cgo and Cgq;) for the compliant
bearings. Figs 12 and 13 give measured and calculated data
for pure conical bearing pads.

From the flow curve of Fig 12 we detect the discharge
coefficients. The Cyq value is chosen to fit the slope of the
measured curves at very large gap heights. Then the Cg;
value is determined for a good fit of the entire curve. We
learned that great care must be spent in making the holes,
due to flash, out-of-roundness and tapering. The load curve
for ps =1 bar indicates the rigidity of the measuring set-up.
For gap heights between 10 and 14 um we observed
pneumatic hammer as can be seen from the irregularities in
the load curve of Fig 12. This pneumatic hammer is due to
the excessive bevelling of 13 pm for this diameter of 60 mm
bearing pad.

Bearing with a pivoting membrane

The gap height for these experiments is zeroed by forcing
the membrane flat by applying a high enough external load
(see Fig 1(c)). For the calculations the gap height is defined
as the film thickness under the pivot, so there is no discrep-
ancy in gap height between measurement and calculation.
Please notice that the gap height defined thus is (sometimes
much) larger than the minimum film thickness in the
bearing gap.

In Fig 14 the measurements and calculations for a bearing
with an outer diameter of 60 mm are shown. With a shift of
2 um in gap height we find very good agreement. Such a
shift can be expected from manufacturing inaccuracy
(flatness and roughness).
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Fig 13 Calculated and measured values of pressure distribu-
tion at different gap heights for the bearing pad of Fig 12
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Fig 14 Calculated and measured values of load and flow

characteristics for a circular bearing pad with a pivoting

membrane and 60 mm outer diameter (D, = 60 mm. Dy =

0.51 mm, Dg = 45.8 mm, H; = 2.3 mm, H,; = 1.8 mm,

Pg =5.5 bar, T; =0, Py = 6 bar)

In this case the load curve for pg = 1 bar also shows the
deflection of the outer part of the membrane. Although
infinite stiffness does not occur at a supply pressure of
6 bar, one sees a definite gain in stiffness.

0.0
I
0.0
3

A

We designed a bearing pad with 35 mm outer diameter for
infinite stiffness at a supply pressure of 6 bar. The resulting
characteristics of that design are shown in Fig 15. The
measured data are in good agreement with the calculated
ones.

Bearing with clamped inner membrane

For this bearing the gap height is the same for measurements
as for calculations, namely the film thickness at the outer
diameter. Kilmister shows two experimentally derived
curves in Ref 2. In Fig 16 one curve is compared with our
calculated curves. As one can see, there is good agreement.

Conclusions

The analysis presented in this paper is used as a basis for
a computer program to be used by designers. Comparison
of the calculation with experiments shows very good
agreement.

The program proved that it is possible to design a bearing
pad with pivoting membrane on demand. Several attempts
by an experienced designer to perform the same job by trial
and error have failed before. Further development on
circular bearing pads will be focused on the theoretical
analysis of pneumatic hammer instability. For such a
dynamic analysis an accurate estimation of the static
equilibrium, as achieved here, is a starting condition.
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Appendix A: Radial gas flow in a non-parallel
bearing gap

The isothermal Navier—Stokes equations of motion in
cylindrical coordinates (R, 6, Z) reduce to

w _ v
drR " "az?

dP

dP

O

de

Herein U is the radial velocity, n the dynamic viscosity and
P the pressure. We used dU/dR < dU/dZ; the inertial forces
are neglected, and owing to axisymmetry all circumferential
effects cancel.

Solving these equations and inserting the boundary condi-
tions (U=0at Z =0 and at Z = H) yields

_ Z(Z-H)dP/dR
-

So the mass flow becomes

U (A2)

H dP
Mgp =p2nR [ UdZ=-(nR p H?[6n) 7 (A3
For compressible isothermal flow (P = p Rg T) and constant
viscosity, integration of this equation gives

dR
AP* = (120 Ry T/m) Mygp -3 2%
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For a linear gap between two nodes Ry, and R, with corres-
ponding nodal gap heights Ay, and H, one can write

H=A+BR (AS5a)
with
Hy Re.-H, Ry
A= ——— — — ASb
R (ASb)
He - Hy
= A5
B Bin. (A5¢)

Substituting Eq (A5a) into (A4) gives an equation that can
be integrated analytically to find

P? =- (120 Ry T/m) Mgs, Fun (A, B, R) + C (A6)
with
Fun (4, B, R) = [ dR/(R H?) a7)
_ {(4 +H)/H}*|2 + log (R/H)
- 3
In the specific case that A = 0, this simplifies to
Fun(0,B, R)= — 1 (A8)

3(BR)?
Suppose we have divided the radius into n - 1 segments with
n nodes; then for segment i we get: Ry =R (i), Rg =R (i+1),
Py =P(i),Pe=P(i+1)and A = A4 (i), B = B (i), so we can
write

P2(i)- P? (i + 1) = (12n Ry T/m) Mgy Int (i) (A9)
with

Int (i) = Fun {A (i), B({), R (i + 1)}

- Fun {4 (i), B (i), R (i)}

For the total gap we know that P (1) = Py, the pressure at
the entrance of the gap, and that P (n) = P,, the ambient
pressure. By adding all equations (A9) we arrive at

(A10)

n=1
Ph - P = (120 Ry T/m) Mgy Z I (i) (A11)
I=
with
n=1
Som= X Int(i)
i-1
we can rewrite Eq (Al1):
P -}
Myp = —— Al2
¥ 120 Ry T Som/n i

The procedure outlined above can easily be applied in
numerical computation, as will be evident from Fig 17.

Appendix B: Gas flow through an inlet restrictor

The inlet restrictor is considered to be composed of two
apertures arranged in series. With an inlet hole of diameter
2 R (1) we have

Aor =1 R (1)? (Bla)
Ain=2nR(1)H(1) (Blb)

In Fig 4 one can see the schematic pressure drops occurring
in the inlet restrictor. Across the orifice aperture, Ay, the
pressure drops from supply pressure, P to an intermediate

October 1987 Vol 20 No 5



Holster and Jacobs — static properties of air-bearing pads with load compensation

GAP
FLOW
2<i<n 2<i=n
each * som= *
element SOM + INT
Aui R : ;
T H: A, B TEST INT(i)
{Eq {A5)) (Eq (A10))
| A=+0 | A=0
FUN FUN
(Eq (A7) (Eq (A8})

Fig 17 Diagram of gap flow calculations

pressure, Po;. Across the inherent aperture, 4;,, there is
theoretically a further pressure drop to Py,, but owing to a
pressure recovery the pressure rises thereafter to P;,. That
pressure Pjy is considered to be the effective pressure at the
entrance of the bearing gap.

The mass flow through both apertures is governed by the
compressible Bernouilli equation. For a pressure drop from
Py, to Pe across an aperture with area 4, one can write

M = C Py Fiyy (Pe/Py) (B2)
with
C=Cq AV {2k/(k - 1) Ry T} (B3)

For C we distinguish between Cj,, with Cq = Cg; and
A = A;, and Cq; with Cq = Cgo and 4 = 4. The function
Fiy depends on the flow regime. For choked flow, if

Pe[Py < {2/(k + 1)}H/&-D) (B4)
then
Fn (Pe/Pv) = Frkr (B5)
= [{2/(k + DIVED] /{k - 1)/(k + 1)}
else
Fin (Pe/Py) =/(Pe/Pp) ¥ - (Po/Py)*+ DIk (B6)

Where & is the coefficient of adiabatic expansion.

The pressure recovery is determined by the K factor, which
is defined by

K=(Por'Pin)f(Por‘Pth) (B7)

From McCabe, Elrod and others® we know the empirical
relationship

K=02+0.5 (1 - ¢"Re/1200y2 (B8)

The Reynolds number, Re, can be calculated from the mass
flow through the inherent aperture (with hydraulic diameter
Dy):

Re = p Ugem Dp[n=M;n/Ain) 2H (1)/n
=Min/(m R (1) 1)
For the mass flow through the bearing gap, Eq (A12) gives
Mgap = Cgap (P - P7) (B10)

(B9)
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with
Cgap = 7/(120 Rg T Som) (B11)

Because we want to calculate Pj, at a pre-determined gap
shape the quantity Som in Eq (B11) is known (see
Appendix A).

The formulae given above are sufficient to determine the

unknowns Pg;, Pin, P, and M. But unfortunately most

formulae are in implicit form. Therefore, we define two

functions from which the zeros must be located:
Fy (Por) =Mgap - Min

F3 (Pin) =Mgap - My

(B12)
(B13)

Our program uses a NAG subroutine COSADF to locate the
zero of function F,. Within that function F,, another
subroutine, REGFAL (using the regula falsi method)
locates the zero of function Fy. In Figs 18 to 20 the
procedures are drawn in M. Jackson diagrams.

For the function F,, Pj, has a known value, estimated by
COS5ADF, in the range P, <Pj, <Ps. So one can calculate
Mgyp (Eq (B10)) and from that Re (Eq (B9)). Then the K
factor can be calculated (Eq (B8)), but to prevent under-
flow the K factor is set to 0.7 if Re > 10 000. Before we
can continue we must first determine the value of Py; in
the region Pj, < Pgr < Popmax, With subroutine REGFAL.
The Pomax follows from choked flow through the inherent
aperture, Ajn (Eq (B1b)). From Eqs (B2) and (B5) we find

Pormax = Mgap/(Cin Fmkr) (B14)

The subroutine REGFAL estimates Py, and uses F; to test
that estimation. Within F; the known value of P, is used
to calculate Py, from the K factor (Eq (B7)). To prevent
unrealistic calculation one should ensure that Py, = 0.

Then one can calculate Mj, (Egs (B2) and (B5) or (B6) with
Py = Py and P, = Py,. In the unrealistic situation during
numerical calculation that Py < Py, one sets Mj, =0, by
means of F, = 0.

Now the routine REGFAL checks whether Mj, equals
Mgyp, to the desired accuracy. If not it starts again with a
better guess of Py;. Having found the Py, we can continue
within the function F, to calculate My, (Egs (B2) and

(B5) or (B6) with Py, = Pg and P, = Py;). If Py, happens to
be larger than Py one sets My; = 0, by means of Fi, =0

(Eq (B2)). Also the NAG routine checks whether F, equals
zero within the desired accuracy, and if necessary it restarts
with a better guess of Pjj,.

RESTR.
FLOW
Cor Coap PP S P COSADF
Cin Pkr
Egs (B1), (B3) Egs(B11), (B4)

F2 (Pin)

(Fig. 19)

Fig 18 Diagram of flow calculation and pressures in inlet
restrictor
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F2 (P,)
(Eq (B13))
Wen Q"P:m':‘: REGFAL Msa:")_}m
Eqs (B10), (B9) (Eq (B14)) (Eq (B2))
Re>10° Re < 10*
K=07 K=K(Re) F1(Por) TEST
(Eq (B8)) (Fig. 20)
Py > P, P> Por > Pur | Por < Pu
Fm=0 ° FulPold * o
(Eq (B6)) (Eq (B5))

Fie 19 Diagram of help-function F, used to equate gap
flow and orifice flow

F1{Pqy}
(Eq (B12))

i F1=
Pin (K) Pir Mgap — Mg

(Eq (B7)) (Eq (B4)) (Eq (B2))
TEST TEST

Py <0 Pin > Por | Por = Pin > P, P < Pye
-] -] o

P‘[h =0 Frn =0 Fm ':Pth} Frnkr

Fig 20 Diagram of help-function F, used to equate gap
flow and flow through inherent aperture

At the end of those iterations the unknowns Pq;, Py, Pin
and Mg, are evaluated.

Appendix C: Deflection of circular plates

A circular plate loaded with a shearing force (per unit
length) S and with flexural rigidity D leads to the following
differential equation for the deflection Y as can be found in
the book by Timoshenko:

The magnitude of the shearing force at a distance from the
centre of a membrane can be derived from

SR=,RPRAR (C5)

The pressure distribution acting upon the membrane can be
approximated by nodal pressures with linear interpolation
between the nodes. This is the same approximation as used
in Appendix A, when calculating the gap flow. For each
specific segment extending from radius Ry, up to radius Re
the pressure can be expressed by

P=P; +QR (C6)

The deflection due to this pressure acting on that specific
segment is calculated from, firstly, loading the membrane
with that pressure up to R = R and, secondly, loading it
with the opposite pressure up to R = R},. As can be seen in
the M. Jackson diagram of Fig 22 this leads to repeating the
same calculation several times. That calculation is elaborated
below.

DEFLEC
He

|

LTYPE =10
[ I

i~r &

[ |
=

(Fig. 22) (App. D)
Fig 21 Diagram of the calculation of the membrane deflec-
tions. Ltype = 10 indicates a clamped inner membrane and
Ltype = 20 a pivoting membrane

LTYPE =20

l—'R -

CONNECT

{RY'YIRY =S/D 1)
M,=-D(Y"+Y'»R) (€2)
Mi=-D(Y'|R+vY") (C3)
with
E H?
D= 507 ()

Herein £ is the modulus of elasticity, v is Poisson’s ratio,
and H is the thickness of the plate under consideration.
The bending moments per unit length M; and M; act along
circumferential sections and diametrical sections of the
plate, respectively.
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b=1 ! %
|
(Eq (C13))
Ry = R(i)
R = RU+1) Poi @
(Eq (CB))
| |
Hn = Re | Hp Ry I m

Miyiily % i _ 3
i Y=v+v, Y=Y+Y,
{(Eqs (C8), (C13), (C14)) (Eq(CT7)) (Eq (CT))

Fig 22 Diagram of a subroutine of Fig 21 that illustrates the
calculation of the deflection of a pivoted inner membrane
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If R}, is the radius up to which a pressure (given by Eq (C6))
acts we bisect the membrane into sections a (with R <Rp)
and b (with R > R}), with different equations for their
shearing forces (S, and Sy, respectively) because Eq (C5)
yields

SaR= R Py +QR)R AR
R(1)

and
SoR= [P (P, +QR)R dR
R(1)

Solving Eq (C1) yields
DYa=QR*®[225+Po R*[64 - Ag R” log (R/Rs) +
+4; log (R/Rs) + A3 + A, R?
D Yy =-BoR? log (R/Rs) + By R? + B, log (R/Ry)
+ Bj

(€7

We introduced the radius Ry at which boundary conditions

are known; these are introduced below (Egs (C13) or (C16)).

The above values of S, and Sy, give
_QR(P | PRQY

and
3_p3 2 _pt
Bo- QRUWP-RY) P ®RW-Rp) (0

12 8

This leaves us with six unknown constants 4,, 4,, 45, B;,
B, and Bj. To solve these constants, we first use the fact
that at radius R = R}, both sections must connect smoothly,
S0 we write

Ya (Rp) = Vs (Rp)
Ya'(Rp) =TYp' (Rp) (C9)
Ya" (Rp) =Yu" (Rp)

The third condition also ensures equal moments at R =R,.
Now we can deduce the following three equations for the
six unknowns:

OR,
By - A, =(Bo -4,) {1 +103(Rpl'rRs)}+ BE
2 (C10)
, PoRp
16
o R
= = -A + P 0 p
Az =B =(Bo - A9) R 30 * T3 (€1
A3 - By =(By - A) R}
{1 - log (Ry/Rs) + Q Ry (0.7 - log (Rp/Rs)}
(C12)
30
, Po Ry (3/4-log (Ry/Ry))

16

The remaining three equations needed to solve the constants
follow from the particular membrane under consideration.
The clamped membrane gives very simple conditions but the
pivoting membrane is too complicated to analyse directly.
Therefore, we bisect that membrane at the pivot radius and
restrict the analysis for the moment to simple inner and
outer membranes (see Fig 21). Appendix D shows how both
sections can be connected together.

TRIBOLOGY international

That leaves us for the moment with the situations that are
summarized in Fig 23, from which the appropriate boundary
conditions can be selected.

For the inner membrane one can find (Fig 23 and Eq (C2)):

Yb (Rg)=0 (C13a)

bYy" (Rs)+v Yy (Rs)/Rs=0 (C13b)

R(DY,"RW)+v Yy (R(1)=0 (C13c)
For D we write

D;=E H;/12 (1 -1*) (C13d)

The b indicates whether the membrane is clamped (b = 0)
or pivoted (b = 1) at radius Rg.

Now we can derive the other three equations, valid only for
the inner membrane, to find

By =-Bi R{ (C14a)
_ @Bb+v)By (b-v)B,
B, = 2G+s) 2RI Y) (C14b)
o G QRQ
2 A )
4 2
= (B +v) {POR(II) i{:6‘A0R(1) } (C149)
+(1+n2R )2 iz do 110% ER (D/Rs)}
In the specific case R (1) =0 then ;
A2 =0 (C14d)

This terminates the derivation of the constants for an inner
membrane, because the remaining part is straightforward.
Having found the constants of integration one can use

Eq (C7) to calculate the deflections.

For the outer membrane a similar reasoning leads to
different formulae for the constants of integration. We also
bisect the outer membrane into section a (R <R,) and
section b (R > R). The shearing forces become:

SaR=-RsJ’RP(P0 +QR)R dR+RSfR (P, + QR)R dR

b=1 b=0
P,
y' (0 =0
3{1} RD Rs
Py
iI M(R(1)) =0
R1) R, A,
P, P
! | M(R(n)) =0
T T SRR
MR =0 Y,/=0
Y,=0 Y.=0

Fig 23 Boundary conditions valid for the various types of
circular membrane
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Fig 24 Dimensions, loading and deflection of a pivoting
membrane

and
Sb =0
This gives the same Eq (C7) but now
QR, PR
i e L T =
7 8 and By =0 (C15)
Eqs (C10), (C11) and (C12) still hold.
Using the boundary conditions of Fig 23 yields
Ya(R)=0 (Cl6a)
" Y. (&
by, R+ X2 R g (C16b)
Ry
RMYy'" Rm)+v Yy (R(1)=0 (C16¢)
For D we write
1 sE
a~ 12(1—V2) (Clﬁd)
And after some elaboration one finds
-QR; PoR{
A; +A4, Rt = -
Al gk Sl T 64 (i
(I = P) B;
By =
YC2RME () (€175)

Ao WD) QRS (3b+v) (P RS[16- 40 RS)
2 45 (b -v) b-v
2 (C17¢)
, Gr»2RS 4,
b-v

This completes the analysis of the circular plates as far as
needed for the deflection of simple membranes by pressure
loading only. It will be clear that, as well as deflections,
also their derivatives and the bending moments can be
calculated. The complex pivoting membrane is analysed
further in Appendix D, using the results found above.
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Appendix D: Connecting of inner and outer
membranes

The situation to be analysed is drawn in Fig 24. The entire
membrane consists of an inner part with thickness H; and
an outer part with a different thickness H,. The pivot
prohibits radial displacement at the upper layer of the
inner membrane.

When we bisect the membrane at the radius Rg (pivot
radius) then we have two membranes as given in Fig 25.
Upon the outer one a force (per unit length) N, and a
bending moment (per unit length) M, act. The same force
and bending moment must act upon the inner membrane in
opposite direction plus a force Vg originated by the pivot
that prevents radial displacement there. One can easily find
from the Fig 25 that the total load for the inner membrane
amounts to

NsHi + No (Hi- H,)
2 2
Nj=Ns-N, (D2)

The deflection gradient at R = Ry, Y;', must be equal for
both the inner membrane and the outer membrane, or:

Ys’ = Yi' (Rs) = Yo’ (Rs) (D3)

For both parts of the membrane, that deflection gradient is
the result of a pressure loading plus the loading by its
bending moment, so:

Yi =Yy M) +Yi (P (D4)
Yo' =Y, (M) +Y,' (P) (D5)

M;= My + (D1)

No

e | UO

Fig 25 Loading at the interfaces of the bisected parts of the
membrane from Fig 24
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The Y'(P) is calculated simultaneously with Y(P) with the
algorithm as described in Appendix C, and can be regarded
as a known quantity at this stage. Because we bisected the
membrane at R = Rg we have to distinguish between Yg'(P)
and Y '(P) for the ‘known’ deflection gradients at R = Ry
caused by pressure load only — for inner and outer mem-
brane, respectively.

In the book by Timoshenko'® one can find the deflection
of circular plates loaded by bending moments. At R = Ry
we find:

2 2

Ys (M) = R3 _R; ay { lfisu + Rf((ll)- Lh
or (D6)

Ys' (M) = CmiM;

2

Yo' (o) = 7 )‘f“ w2 (B Rf((l”fy)} g—
or (DT)

Ysc:r (M) = - Cino My
with

EH} EH}
ST e iR (B8

The forces per unit length &j and Vg must stretch the
membranes in such a way that the displacements in their
midplanes at R = R coincide with the displacements from
the deflection gradient. From Fig 25 one can deduce:

Ui=-Ys Hif2 (D9)
Uo =-Ys (Hi-Ho/[2) (D10)
Timoshenko!® also gives:
N Ry 2 2
L = 1- RZ+(1+ R(1
i HiERsz-R(l)z{( V)RS +(1+v)R(1)*}
or (D11)
Ui=Cni Vi
R iR
= 1-»)RZ+(1+V¥)R
°~ H, E RZ-R? {(d-» (1+v)Ri}
or (D12)
UO i Cno NO
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From Egs (D6) to (D8), (D11) and (D12) it follows that

Crmi H Eiio 23
Copr—s ~ and Cpo = "‘1"2 ¢ (D13)
All equations above lead to the following set of four
equations: _
1 “Cmi - Cini Hif2 = Cri (i - Ho )2 Ysl Ysi‘ (P)
Hif2 0 CmiH{/12 -CmiH{/12 M
SRy e 0 0 o bk e
H -Hyf2 0 0 CanoHA12 No 0
This set of equations can easily be solved to give:
Ya B+ Cai Yo' (P
Ysr L C]TIO YS]. (P) le Y&D i;(-""-')-“—— (D]4)
4Chno + {1 +(BHi/Hy = 1)*} Ci
r r
PRI 1 (D15)
Cmo
r
= No-6Ys (D16)
H; Ci
- i 1) ¥
N() = 6 (2 HIF(HO ) Y.': (Dl?)
HCI C‘I‘I'IO

Please notice from equation (D14) that for infinite Cpyo (nO

outer membrane) the deflection gradient Y' reduces by a

factor 4 because of the radially fixed pivot at the upper side

of the plate.

From Eq (D1) it follows that

2 Hi/H, - 1)? 1

{ ( l{ 0 ) ¥ 8 }

Cma le

Because Yg' (P) and Yg,' (P) are supposed to be known, it
is straightforward to calculate the unknown bending
moments. The combined deflection can now be calculated
from

Y=YP)+Y M) (D19)

with Y (P) already known from Appendix C and Y (M)
following from Timoshenko’s formulae™®

{ (l+ )R(l)’ log (;}) - ‘5; } M; R?
D;(L+») RE-R (1Y)

R RS
- { '+(1- )R(n) 103( )-TS}MQRSQ

51
Do (1 +v)(R(n)* - RY)

Mi=My-37Y, (D18)

Yi(Mj) =

Yo(Mp) =

It is also possible to calculate the stresses in the membrane,
but this is not elaborated here.
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