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the calculation of the dynamic stiffness of circular, externally pressurized gas thrust
bearings with a nonuniform clearance. Some observations are made about the char-
acteristic behavior of gas bearings subject to dynamic loading. The primary emphasis
of this paper, however, is the development and qualification of a test apparatus and

the necessary test techniques for measuring dynamic stiffness up to 250 N/um at
Jrequencies up to 2000 Hz. A thorough, experimental verification of the FEM model
is reserved for a later paper.

1 Introduction

Externally pressurized, circular, gas bearings are widely used
as guides in slideways and as thrust bearings in spindles. Their
main advantages are ease of manufacturing and large load per
unit area. Unfortunately, gas bearing pads, particularly ones
with nonuniform clearances, are sometimes prone to a pneu-
matic-hammer instability. In most gas-bearing designs, only
the load, static stiffness, and flowrate of the gas bearings are
considered. So long as the bearing is stable, the frequency
dependence of its dynamic stiffness is seldom considered. Be-
cause externally-pressurized gas bearings exhibit damping only
over a small frequency band, they are often reputed to be
poorly damped. However, many applications of gas bearings
would greatly benefit if their damping characteristics could be
fully exploited.

To better utilize gas bearings, better computational tools
were necessary to analyze and evaluate their dynamic behavior.
The analytical results must also be verified experimentally. The
primary purpose of this paper is to describe the test apparatus
and test techniques we developed to measure the dynamic stiff-
ness of gas, thrust bearings and to demonstrate the capabilities
and limitations of the apparatus. Our goal was to develop a
capability to measure dynamic stiffnesses up to 250 N/um in
magnitude with an accuracy better than 5 percent over a 0-
2000 Hz frequency range.

2 Overview of the Dynamic Analysis of Gas Bearings
by the Finite Element Method

The geometry of a nonuniform-clearance bearing of the type
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under consideration here is shown in Fig. 1. We propose to
use the finite element method to analyze the dynamic stiffness
of these bearings. In the FEM formulation, a special form of
the one-dimensional, Reynolds equation for compressible flow
through a circular, thrust bearing is used (Holster and Jacobs,
1987),
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This form of the Reynolds equation is expressed in terms

of a mass flow balance. After rewritting this equation into the

weak formulation and after partial integration, we can find
for ideal gases (p=pRT) that
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This equation must be fulfilled for all test functions  that
are only prescribed at the boundaries. The boundary conditions
used to evaluate the righthand side are,
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Fig. 1 Cross-sectional view of a bearing with a nonuniform clearance
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for r=R;;: ¥=1 and M=M,,,
and for r=R,,;: y=0and p=p,.

Here M;, must equal the flow through the inlet restrictor
which is modeled using a method described in Holster and
Jacobs (1987). Equation (1) must be linearized in order to solve
for the static pressure distribution p(r) = pg(r) with
h(r)=hy(r). We found that a Newton iteration scheme can
be conveniently employed to solve the resulting finite-element
model. Due to the intricate nature of the inlet restrictor flow,
we also needed to use a relaxation scheme to calculate the
pressure recovery factor. From this computed pressure distri-
bution, the static characteristics of load and gas flow can be
determined for the bearing.

‘When we linearize equation (1) for the time dependent so-
lution, we follow a similar procedure, but we use the static p,
solution as a starting point. First we enforce a small, sinusoidal
variation of the gap height with constant amplitude h <<h,,
this induces small in-phase, sinusoidal and out-of-phase, co-
sinusoidal, pressure variations. Therefore,

h=hy+ hsinwt
p=pg+ psinwt+ P coswt,

where the boundary condition at r=R,,, is p=p=0. After
substituting these into equation (1) and collecting the linear
terms, the sinusoidal part is
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These two coupled equations must now be solved simultaneusly
for the two unknown pressure distributions. Note that for

w=0, equation (2b) gives p =0 and equation (2) reduces to
the static case for p.

We can then apply Galerkin’s method by approximating
p and P with the interpolation polynomials,

To formulate the 1D FEM problem, the radius within the
region R;,<r<R,, is divided into (N—1) line elements and
one boundary element for the restrictor at r=R;,. In local
coordinates, each line element has a length A =r, — r|, and over
that element the linear interpolation polynomials are
¢, =(r,—r)/A and ¢,=(r—r;)/A. To derive the element equa-
tions, equation (3) is substituted into equation (2) and the
integrals are evaluated over each element. By defining the
following constants:
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the element matrix and the corresponding element vectors are
related as
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and the boundary element at r=R;, is
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Here the « symbol is used because an equal sign can only
be rigorously applied to the global matrix obtained from the
assembly of these element matrices. At a particular frequency,
the solution for p; and p; are straightforwardly determined by
means of a standard, finite-element, computer code. The code
assembles the global matrix of dimension 2(N—1) X 2(N —1),
which is then solved to obtain the 2(N — 1) unknown pressures.
Note that the solutions for the nodal pressures are linearly
dependent upon A, the amplitude of the height variation. Fi-
nally, the in-phase pressure, p, and the out-of-phase pressure,
D can be integrated to obtain the real and imaginary parts of
the dynamic stiffness of the bearing at the frequency w,

Rout

K=k+ik where k=2£ S prdr and
h Rin
o = 21 (Fout
p Ep; ¢'J and p EP; ¢_{ (3) E == E ﬁr dr
j= j=1 h JRin
Nomenclature
a = acceleration, m/s? Pa» Ps = ambient and supply pressure, p = density, kg/m?
F = force, N Pa 7 = time constant, s
h = gap height, m p; = solution vector of nodal ¢ = interpolation polynomials
h = amplitude of gap-height var- pressures, Pa Y = test functions
iation, m r = polar coordinate in the ra- w = angular velocity, rad/s
k, K = stiffness, N/m dial direction, m .
M = mass flow, kg/s R, = specific gas constant, Indices
N = number of nodes on a radial J/kg-"K b = a bearing property
line s = Laplace variable, s~ o0 = static condition
p = pressures, Pa [ = time, s in = at the inner radius
P, b = in-phase and out-of-phase T = temperature, °K k = Kistler force transducer
components of dynamic A = length of a line element, m out = at the outer radius
pressure, Pa n = absolute viscosity, N-s/m? e = an element property
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Fig. 2 Example solution of the dynamic pressure distributions in a 60
mm diameter bearing, with a 13 pm conicity and a 0.53 mm diameter
feed hole: Operating conditions: supply pressure = 6 baro, minimum
clearance = 3 pm, load= 1189 N.

3 Characteristic Behavior of Gas Bearing Dynamics

The dynamic-pressure distributions shown in Fig. 2 illustrate
typical solutions of equation (2) for a conically shaped air
bearing at different frequencies of gap oscillations. Note how
the pressure distributions smoothly evolve as the frequency
increases. At high frequency, the pressure distributions con-
verge to the trapped-gas pressure distribution which has a zero
imaginary part. This infinite-frequency solution is easily cal-
culated by using Boyle’s Law (Langlois, 1962), and knowledge
of the static pressure distribution and gas-film thickness. Not
only does Boyle’s Law provide an independent check of the
time-dependent, finite-element solution, but it can provide an
indication of bearing stability. When the real, dynamic pressure
at high frequency exceeds the static change in pressure for A,
the bearing will generally be stable (Roblee and Mote, 1985
and 1986a).

After integrating the pressure distributions of Fig, 2, the
resulting dynamic stiffness is plotted on a Nyquist diagram in
Fig. 3(a). In this diagram, a negative imaginary part corre-
sponds to a positive damping characteristic in the bearing,
which means the bearing will dissipate the kinetic energy of
an oscillating bearing at those frequencies. The Nyquist plot
in Fig. 3(a) corresponds to a minimum bearing-clearance of 3
pm. Under this condition, the bearing has positive damping
at all frequencies. However, when the minimum clearance is
increased to 10 um by a decrease in the applied load, as in
Fig. 3(b), the bearing demonstrates a negative damping char-
acteristic for frequencies below 1500 Hz. Consequently this
bearing would be unstable if there were enough mass riding
on it (>0.56 kg) so that the mass-bearing natural frequency
is below 1500 Hz.
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Fig. 3 Calculated dynamic stiffnesses plotted on a Nyquist diagram
for a minimum clearance of 3 and 10 pm. The numbers on the plots
indicate frequencies in Hertz. The dashed line is a second order model
correlated to the calculated data.

The mostly semi-circular shapes of the Nyquist plots in Fig.
3 indicate that the frequency responses are similar to those of
the pole-and-zero transfer function (Takahashi et al., 1970)

1+ 15
0.'1 + 728

Ky(s)=K

In the case of Fig. 3(b), where two semi-circles are evident,
the response correlates to two, pole/zero pairs. To demonstrate
this point, a two-pole, two-zero transfer function was fitted
to the calculated frequency responses in Fig. 3. The result is
illustrated by the dashed lines on the charts. This type of pole/
zero behavior is characteristic of many types of gas bearings,
as illustrated by past test data (Plessers and Snoeys, 1988;
Roblee and Mote, 1985, and 1986a) and other dynamic models
(Lohiya and Pande, 1989; Roblee and Mote, 1985, 1986a,
1986b; and Langlois, 1962).

The fact that gas bearings have this pole/zero-type behavior
has important implications for the test apparatus and tech-
niques needed to measure their dynamic stiffness. Because their
dynamic stiffness is a smooth function of frequency, with real-
valued asymptotes at low and high frequency, a bearing’s dy-
namic response does not need to be characterized over a wide
frequency spectrum. Unlike a mechanical structure, a gas-
bearing’s dynamic stiffness will not have many large, sharp
peaks or drop to near zero over narrow frequency bands.
Consequently, if such phenomena are observed in the meas-
urements, they must be an artifact of the test apparatus itself.
This intrinsic behavior of gas bearings allows them to be char-
acterized by data from only selected portions of the frequency
spectrum.
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4 Description of the Test Apparatus

In principle the measurement of dynamic stiffness of a gas
bearing is the same as for any other object. Namely, a known,
time-varying load must be applied, and the resulting defor-
mation must be measured. Standard tensile-test machines have
this capability for slowly varying loads. However, a number
of complications arise when a gas bearing is to be characterized.
First, a gas bearing must be preloaded with a large, static load
in order to establish its nominal gap height at a given supply
pressure. Then a small dynamic load must be superimposed
on the static one so that the gap-height variation is less than
1 percent of the total gap height. For any larger load, the
response of the bearing would become more and more non-
linear as the amplitude increases, which is not of interest for
most applications of gas bearings (see Section 2 also). Accurate
measurement of nonlinear stiffness over a wide frequency range
is also much more difficult to achieve. Because the nominal
gap height may only be 3 um, a very high resolution, motion
sensor must be used. Care must also be taken so that the
structural loop between the motion sensor and bearing surfaces
does not introduce measurement errors in the 0-2 kHz fre-
quency band.

To develop this dynamic-stiffness-measuring capability we
choose to modify an existing apparatus that had been used to
measure the static properties of gas bearings (Holster and Ja-
cobs, 1987), such as load, gap height and flow. The result of
this effort is shown in Fig. 4, where an overview of the entire
test apparatus is presented, and Table 1 lists the instrumen-
tation used to perform the measurements. Starting from the
bottom, the parts of the apparatus are described in the fol-
lowing.

3# air beanng pads
for axial alignment

: T—string
——shakar
air bearing | R
guide plus elastic pivot
frictionless . .
load generator pivot for
_-parallel

preload for
shaker

—=—""| alignment
o i e ;‘zggllgratior / !
bearing pad | { [—ace |
to be measured \measurement [ | =

| LVDT (2%)
i ]
A00x250x150 [~ piezo force-
steel block | fransducer

| : LT._T-slulted base plate

granite table upon three
vibration isolators

A granite base (900*700*70 mm?) is mounted on three vi-
bration isolators. Thereupon rests a standard, T-slotted, base
plate (1000*640*40 mm?® on which a 90 kg steel block
(300*250*150 mm?) is mounted. Beneath the steel block is a 1
mm thick rubber sheet. The basic principle of this design is to
have a base with a large inertia and well damped resonances
in the 0-2 kHz frequency range of the measurements. The
measuring set-up is positioned centrally with respect to the
base so that coupling to the natural bending modes of vibration
of the base plate is minimized. This base design is the final
result of a number of trial configurations that progressively
improved the dynamic characteristics of the apparatus. Meas-
urements of the dynamic response of the base are presented
in Section 5.

A Kistler, piezo-electric, force transducer is mounted be-
tween the heavy, steel block and the bearing pad to be meas-
ured. The force transducer is prestressed by 5000 N to obtain
a high contact stiffness. The use of the standard washer proved
to be essential for obtaining good force data, otherwise the
force transducer’s output was sensitive to the bending of its
upper surface. On both sides of the bearing pad, two LVDT-
type, displacement transducers are mounted so that they can
directly measure the gap-height variation of the bearing. We
found that for frequencies as high as 400 Hz, the LVDTs have
sufficient accuracy if compensation is used for the amplifier’s
frequency response.

The bearing pad is opposed by a surface that is flat within
0.1pm. This surface is rigidly supported so that the bearing
gap will not be influenced by it bending under the applied load.
The opposing piece attaches to an air-bearing-guided ram by
means of a pivot joint which allows the loading surface to
align itself to the bearing. The ball pivot also insures that the
applied force is transmitted through the centerline of the load-
ing surface, without inducing any moment loads. An acceler-
ometer can also be mounted on the centerline of the loading
piece, where it will be insensitive to its tilting motions. The
large, static, bearing load is generated in a chamber above the
ram, where pressurized air acts upon a piston. The chamber
pressure is controlled by an ultrastable, precision regulator,
and loads up to 1500 N can be generated. This device is de-
scribed in more detail in Holster and Jacobs (1987).

On top of the loading device, a voice-coil-type minishaker
is mounted to an elastic pivot. The shaker is counterweighted
by a string which is guided over two rollers on a pedestal. The
rollers can be floated on three air-bearing pads so that the
string can be aligned with the ram. The soft spring on the

Fig. 4 lllustration of the test apparatus string dynamically decouples the counterweight from the
Table 1 List of instrumentation

Device Make and model Sensitivity/range Resolution Output levels
Structural Hewlett-Packard 70 db dynamic range, 1V + 10V random
Dynamics 5423A 0-20 kHz 400 frequency noise
Analyzer lines
Power Bruel and Kjaer 10 Hz to 20 kHz 75 W with
Amplifier 2706 attenuator
Mini- | Bruel and Kjaer + TN force +3 mm stroke,
shaker 4810 20 Hz-18 k-Hz 15 W power
Accelerometer Bruel and Kjaer 0.984 pC/m-s~2

4371 0.2-9100 Hz
Force Kistler 9061 4.01 pC/N
Transducer i 0-200,000 N, 0-45 kHz <0.01 N
Charge Bruel and Kjaer w/4371: 1.0 m/s 2 5% 107%pC Integrates
Amplifier 2635 w/9061: 0.1V/N (2Hz to 22kHz) acceleration,
2 Hz-100 kHz +8V
Charge Kistler 5001 w/9061 0.01V/N 2x107* pC rms Up to 100,000 sec
amplifier 0-180 kHz time constant,
+= 10V
LVDT dis- TESA +1.0V
placement probes: GT42
transducer power supply: 302 0.324 V/um
| amplifier: 401 0-160 Hz (—3 db) <0.06 pm
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Table 2 Summary of the important mechanical parameters
of the test apparatus

ms=1.04 kg The mass of the counterbalance hanging
on the string connected to the minishaker.

ks;=10° N/m The stiffness of the soft spring on the string

my=1.0 kg The mass of the minishaker housing.

The stiffness of the flexures inside the
minishaker.

ky=2%10° N/m

The mass of the entire piston and ram
assembly, including the opposing bearing
surface and the minishaker core.

m, = 0.875 kg

k;=10to 250*10° N/m  The stiffness of the bearing film.

m,=1.4 kg The mass of the bearing pad plus mounting

plate.

The measured stiffness of the Kistler force

k,=4*10° N/m
transducer, including its contact stiffness.

m, =400 kg The mass of the granite table, T-slotted
plate, the steel block plus everything fixed
upon it.

k,=10° N/m The stiffness of the vibration isolators un-

derneath the granite table.

| /U\

10" 10 10" 102 10®  10*  10°
Frequency (Hz) —=

Rt
o
']

disp. (N/m)
a‘\l _D;o

Kistler force/bearing
=
o

Fig.5 Ananalytical model of the experimental apparatus with a bearing
of a constant 102 N/m stiffness. This ampiitude portion of a Bode plot
illustrates the response of the force transducer to the absolute dis-
placement of the loading ram.

shaker is then able to generate the dynamic forces necessary
to perform the desired measurements.

5 Qualification Tests of the Apparatus

The configuration of the test apparatus presented above,
including the type and location of the transducers, was chosen
carefully. Special consideration was given to the dynamic in-
teraction of the structural apparatus, transducers and their
mounts, and the gas bearing itself. Each transducer also has
its own limitations, but even with ideal transducers, the in-
teraction with the apparatus can limit out ability to measure
the bearing’s dynamic-stiffness. To better understand how the
apparatus can influence the frequency range and accuracy of
our measurements, we constructed a simplified, lumped-mass/
spring model of its major components. Table 2 lists the values
of the five masses and fivé springs that comprise the model,
along with a description of the component it represents. As is
apparent from the topology of the apparatus, the springs in-
terconnect the masses in a series fashion, with k, connecting
m to ground and on through k5 connecting m; to the top of
my.

In this model the force generated by the coil of the shaker
acts across spring k4, while the compression of spring &, pre-
scribes the output of the Kistler force transducer shown in Fig.
4. The previously mentioned accelerometer measures the ab-
solute acceleration of the ram, 1, whereas the LVDTs measure
the displacement of m; relative to m,. Unfortunately the be-
havior of the LVDTs limit their use to frequencies below 400
Hz. Conversely, high-sensitivity accelerometers have an un-
rivaled ability to detect minute motions at high frequencies.

Because accelerometers measure absolute motion, the ideal
measurement situation would have the bearing mount be fixed
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Fig. 6 Dynamic response of the gas bearing mount within the experi-
mental apparatus. This amplitude portion of a Bode plot relates mount
acceleration to force measured on its upper part.
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Fig. 7 Absolute displacement response of the bearing mount to an
applied force measured by the force transducer

relative to the inertial frame of the Earth. Then the bearing’s
dynamic-stiffness could be determined by measuring only the
acceleration of the opposing surface when a known, dynamic
load is applied. In practice, however, this ideal situation can
only be approximated by fixing the bearing pad to a base with
a large mass. If the base is massive and rigid enough, the
acceleration of the bearing pad will be negligible (< 1 percent)
compared to that of the opposing surface. To test this hy-
pothesis a bearing stiffness of 100 N/um was used in the
lumped-mass model, and the transfer function of the absolute
displacement (integrated acceleration) of m; and the compres-
sion of k, was calculated using MATLAB. The amplitude part
of this transfer function is plotted in Fig. 5. The stiffness of
the isolators is evident at frequencies below 2 Hz, but only
between 300 and 2000 Hz does the response closely match the
100 N/pm stiffness of the bearing. The resonance at 7.9 Hz
is a result of the entire apparatus moving on the isolators,
whereas the stiffness peak at 79 Hz is a result of an anti-
resonance of the table mass, m,, on the bearing film. The
frequency of this peak would shift to 126 Hz if the bearing
stiffness were 250 N/um. The last stiffness peak, at 8600 Hz
in Fig. 5, is a result of the bearing mount, m,, resonating on
the force transducer, k,. The three other vibration modes of
the test apparatus do not affect the transfer function plotted
in Fig. 5. Those modes are at 3.8 Hz for m5 on k;, at 9.3 Hz
for m, on ky, and at 1700 Hz for m; on the bearing film, ;.
The insensitivity to the 1700 Hz mode is a direct result of
locating the force transducer below the bearing, as opposed
to attaching it to the ram. We conclude from this analysis that
an LVDT measurement of gap-height variation to 400 Hz is
more than sufficient to cover the low-frequency band where
a single accelerometer measurement produces inaccurate stiff-
ness estimates. To qualify the measuring setup, we mounted
a force transducer at the position where the bearing normally
mounts. Onto the force transducer, a mini-shaker was attached
via an elastic pivot.
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Fig. 8 Dynamic stiffness of the Kistler force transducer and its mount-
ing hardware as determined from relative acceleration measurements

Figure 6 shows the amplitudes of a transfer function meas-
ured between an accelerometer mounted on the top side of the
bearing mount and the output of the force transducer. If the
table were perfectly rigid this ¢/F response should correspond
to the inverse of the table mass, 0.0025 kg ', as it does in Fig.
6(a). Figure 6(b) however, shows a number of unmodelled
resonances of the table. Note that these resonances are well
damped, which is a result of several, careful redesigns of the
apparatus. When the data of Fig. 6(b) is integrated twice, the
dynamic compliance of the bearing mount is obtained. The
real and imaginary parts of this dynamic compliance are shown
in Fig. 7. If this motion were neglected, as in a single acce-
lerometer measurement of a bearing’s dynamic-stiffness, the
error in the real part of the measurement will exceed 5 percent
at only a few frequencies when the bearing has a compliance
of 4nm/N. However, the imaginary (out-of-phase) part of the
dynamic compliance is usually much smaller than the real part
for most gas bearings. Consequently, the percent error for the
imaginary part will be much larger.

The bearing-mount acceleration shown in Fig. 6 introduces
one other error to the measurement of bearing dynamic-stiff-
ness. Because the force transducer is separated from the bearing
surface by an object with mass, m,=1.4 kg, its acceleration
causes the measured force F; to differ from the force F, acting
on the gas film of the bearing. Applying Newton’s Law to m;
illustrates the error,

Fb/Fk=l+m2 a/F. (6)

The a/F, data from Fig. 6 indicates that this mass effect
increases the measured stiffness by less than 5 percent at fre-
quencies up to 3 kHz. When the mount acceleration is meas-
ured, however, equation (6) can be applied to compensate for
this error. This mass effect was also present in the idealized
model of the test apparatus. In this case, however, the table
is considered, so then m,a/F is less then 0.01 below 1000 Hz
and therefore it has an insignificant effect on the transfer
function of Fig. 5.

The motion of the bearing mount can be compensated for
by taking two accelerometer measurements, one on each side
of the bearing. The average of these two, a/F transfer-function
measurements gives the motion of the mount at its centerline,
which can then be subtracted from the ram accelerometer data.
If different accelerometers are used for these measurements,
their frequency response must be closely matched or else other
errors will be introduced. By this technique, bearings with
much higher stiffness than 250 N/um can be measured ac-
curately. This fact is illustrated by the dynamic-stiffness meas-
urement of the Kistler force transducer shown in Fig. 8. Here
four accelerometer measurements were used, two on top of
the force transducer and one on each side. The flatness of the
stiffness amplitude and the near zero phase demonstrate how
well the mount-plus-table motion of Fig. 7 can be compensated
for. The well-damped frequency response of the table aids this
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Fig.9 Calculated and measured dynamic stiffness of the 13 pm conical
bearing at minimum clearances at 3, 5, 10, and 15 pm and with a constant
supply pressure of 6 baro. LVDT data are used up to 400 Hz and a single
accelerometer measurement is used from 400 to 1200 Hz.

process because very accurate transfer-function measurements
can be made with the limited dynamic range and frequency
resolution of the spectrum analyzer (Otnes and Enochson,
1978).

6 Prototype Bearing Measurement

In this section we describe the procedures used to measure
the dynamic stiffness of a prototype bearing. This bearing is
circular, with an outer diameter of 60 mm, an inlet hole of
0.53 mm and a conicity of 13 um, which match the bearing
analyzed in Figs. 2 and 3. This particular bearing is prone to
pneumatic hammer at supply pressures larger than 6 bar gauge
pressure, which makes it an interesting one to examine.

The static measurements of load and flow showed a good
agreement with the computer model when the measured gap
height is corrected by +0.5 pm. A +0.5 pm discrepancy in
the gap measurement is typical considering the errors involved
in establishing a zero-gap reference for the LVDTs. The close
agreement with the static solution is encouraging because it is
the starting point for the dynamic-stiffness calculations. For
a supply pressure of 6 bar, the calculated values of dynamic
stiffness are shown in the amplitude and phase diagrams of
Fig. 9 for four different gap-heights. The 3 and the 10 ym
solutions are the same as the ones shown in the Nyquist diagram
of Fig. 3, but here only the frequency range of 10 to 1200 Hz
is presented.

For the same four gap-heights used in Fig. 9, the dynamic
stiffnesses were measured on the test bearing. The dynamic
measurements were performed over three frequency bands,
using a band-limited excitation force:

10 - 110 Hz: displacements measured with LVDT probes
50 - 450 Hz: displacements measured with LVDT probes
400 - 1200 Hz: ram acceleration measured only.

The three sets of dynamic stiffness data for each gap-height
are plotted with the computed stiffnesses in Fig. 9. The agree-
ment is good, especially considering the 0.5 pm discrepancy
in the gap-height measurements. The pole/zero-type frequency
response of the bearing is very apparent in the measurements.
The good agreement where the data sets overlap, in the 50-
110 Hz and the 400-450 Hz bands, demonstrates the consist-
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ency of the test apparatus and the measurement techniques.
The largest discrepancy between data sets occurs in the phase
measurement by the LVDTs and the accelerometer near 400
Hz. The 4° discrepancy is a residual error in the compensation
of the frequency response of the LVDT amplifier. This error
is reduced to an undetectable level at frequencies below 150
Hz.

One indicator of measurement quality is the smoothness of
the plots in Fig. 9, which are the averages of 40 measurements
each. The measurement quality degrades when the dynamic
stiffness of the bearing under test is large. This degradation
is primarily due to the resolution limits of the motion sensors
in detecting the small displacements (<10 nm rms) or small
accelerations of a stiff bearing being excited by a limited force.
The resolution limits of the LVDTs are also evident when the
10-110 Hz data sets are compared to the 50-450 Hz data sets.
The wide frequency-band measurement is noiser because the
excitation force is more widely distributed, which lowers the
signal-to-noise ratio of the LVDT at any given frequency. The
coherence (Otnes and Enochson, 1978), of the LVDT and the
force transducer signals also indicates a loss of data quality
with a stiff bearing, as it drops from near 1.0 at low frequency
to less than 0.95 at 450 Hz. This problem could be reduced
by taking more LVDT measurements over narrower frequency
bands, but this will be at the expense of increased testing time.
Figure 9 shows the lower noise data that are obtained from
the accelerometer at 400 Hz as compared to the LVDT data.
This is due to the acceleration level increasing with the square
of the frequency, while the displacement spectra is nearly flat
in this frequency band. Also, the LVDT amplifier attenuates
the signal as much as 8 dB at 400 Hz. Below 200 Hz, the
accelerometer signal is much noisier than the LVDTs, which
was evidenced by other coherence measurements. The good
coherence as well as the consistent data, even at reduced ex-
citation levels, indicate that the dynamic response of the bear-
ing is predominantly linear for the small (< 2N rms) exicitation
forces used here, which satisfies one of our measurement ob-
jectives.

The data presented in Fig. 9 are a result of an expedient
measurement procedure where the bearing can be quickly char-
acterized. The penalties of this procedure are apparent when
the dynamic stiffness is high. Not only is the LVDT data noiser,
but the undulations in the accelerometer data, particularly
between 400 and 800 Hz, are larger. These undulations in
dynamic stiffness are not due to the behavior of the gas film,
but they are a result of the motion of the bearing mount on
the table (see Fig. 7). The table motion could be subtracted
out if two more accelerometer measurements are made. With
this more time consuming procedure, much stiffer bearings
could be tested to frequencies approaching 3 kHz. However,
the quality and quantity of the data in Fig. 9 is still more than
adequate to identify the dominant, pole/zero response of this
particular bearing, even if the data between 400 and 800 Hz
is ignored.

7 Conclusions
We have developed a finite-element, computer code to model

DISCUSSION

the dynamic stiffness of externally pressurized gas, thrust bear-
ings. In particular, we were able to incorporate an accurate
model of the restrictor flow in the code. Our initial results are
consistent with past observations and other models, but the
code has yet to be completely verified with experimental results.
A future paper will provide more details about the code, our
experiences with its use, and a thorough experimental-verifi-
cation study.

The primary outcome of our current work is the development
of a general-purpose apparatus for measuring the static and
dynamic stiffnesses of small objects (< 60 x 60 x 60 mm?) under
static loads of up to 1500 N. With this apparatus, we have
developed techniques for measuring dynamic stiffnesses greater
than 250 N/um and over a frequency range of 10 to more than
2000 Hz. The measured dynamic-stiffness amplitudes are ac-
curate to better than 5 percent while using excitiation forces
of only 2N rms. The test apparatus and techniques provide
consistent, reliable data that can be efficiently obtained. With
this test apparatus and test techniques, the dynamic stiffness
of a prototype, gas bearing was measured. We were able to
successfully characterize the bearing’s dominant, pole/zero-
type frequency response in the frequency range where it is
normally utilized (10-1200 Hz). The measurement results show
the frequencies where the bearing has the most damping and
where it could go unstable. As a result of this work, we now
have a fully qualified, dynamic-stiffness-measurement capa-
bility. We anticipate that this capability will allow us to un-
derstand the dynamic response of gas bearings more fully than
before, which will permit their use in more demanding appli-
cations.

References

Holster, P., and Jacobs, J., 1987, “Theoretical Analysis and Experimental
Verification of the Static Properties of Externally Pressurized Air-bearing Pads,”
Tribology International, Vol. 20, No. 5, pp. 276-289,

Huebner, K. H., 1975, The Finite Element Method for Engineers, Wiley, New
York, NY.

Lohiya, S. H., and Pande, S. S., 1989, “‘Analysis of Tapered Land Aerostatic
Thrust Bearings Operating Under Non-Steady Loads,”” Mech. Mach. Theory,
Vol. 24, No. 6, pp. 515-521.

Langlois, W., 1962, ‘‘Isothermal Squeeze Film,”” Quarterly of Applied Math-
ematics, Vol. XX, No. 2, pp. 131-150.

Otnes, R,. and Enochson, L., 1978, Applied Time Series Analysis, Vol. 1,
Basic Technigues, Wiley, New York, NY.

Plessers, P., and Snoeys, R., 1988, **Dynamic Identification of Convergent
Externally Pressurized Gas-bearing Gaps,’’ ASME Jour~aL of TrieoLOGY, Vol.
110, pp. 263-270.

Roblee, J., and Mote, Jr., C., 1986a, ‘‘Vibration Damping in Externally
Pressurized Gas Bearings,”’ Lawrence Livermore National Laboratory; Liver-
more, California; UCRL-93600 Preprint, Presented at the International Con-
ference of Vibration Problems in Engineering, Xi’an, China.

Roblee, 1., 1986b, ‘‘Design of Externally Pressurized Gas Bearings for Stiff-
ness and Damping,”’ Lawrence Livermore National Laboratory, Livermore,
Califnorina, UCRL-95314 Preprint, Presented at the 9th International Gas Bear-
ing Symposium, National Bureau of Standards, Washington, DC.

Roblee, J., 1985, “‘Design of Externally Pressurized Gas Bearings for Dynamic
Applications,” Ph.D. thesis, University of California; Berkeley, Calif.

Takahashi, Y., Rabins, M., and Auslander, D., 1970, Control and Dynamic
Systems, Addison-Wesley, New York, NY.

F. Al-Bender’

The authors make an interesting contribution to the problem
of evaluating the dynamic characteristics of aerostatic bear-
ings. With special emphasis laid on experimental verification,
they give a detailed description of the test setup and an elab-
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orate discussion of its capabilities and limitations. Their work
falls short, however, of establishing a design methodology for
such an apparatus. This seems to be due to (¢) aiming at a
general purpose apparatus not restricted to evaluating air bear-
ings alone; and (b) starting from a given structure, originally
designed for static tests, and trying to modify it to accom-
modate dynamic testing. The results they obtain thus do not
constitute a significant advance upon those obtained by Ples-
sers (1988) who used essentially the same type of test apparatus.
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With regard to point (a) above, an essential distinction may
be made between a ‘‘black box’’ and a component whose
characteristic equations are known in that the latter yields to
dimensional analysis whereas the former can only be dealt with
using absolute quantities which may be very misleading both
with respect to general characterization as well as error esti-
mation of observation. Normalization, on the other hand,
leads to similitude criteria which facilitates appropriate scaling
both of test object and apparatus. If we, thus, normalize this
particular problem (see e.g., Gross (1962)) we may distinguish
the following dimensionless (design) parameters:

Ez Rin/Routs Enz hin/ Bous Es:Ps’fPas

= 240{!}‘-" (RsTs) 'Rou:

A Pl (the feed number),
12#0’ RD'LI[ 7
s — ) (the squeeze number),
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(where C, is the coefficient of discharge of the in-flow, and u
is the viscosity of the fluid).

This set of parameters determines the dimensionless bearing
characteristics:
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We note especially that the dimensionless stiffness (which
is complex valued) appears as a function of the squeeze no. o
(rather than the frequency,) a circumstance which allows scal-
ing (up or down) of the test frequency domain by one or a
combination of the remaining absolute parameters in o, in
particular the bearing geometry (Rgu/ou). Such a starting
point (viz. based on normalized equations) would, in our opin-
ion, provide for a more systematic treatment of the problem.

A few other points about the theory will not be out of order
here. Firstly the proposed use of the FEM to solve a linearized
differential equation seems, in our view, superfluous since such
an equation may be solved more accurately, simply and effi-
ciently by conventional techniques (e.g., Euler’s method
through to Runge-Kutta). It would be interesting indeed if the
unlinearized eq. 1 were to be solved by FEM, so as to compare
the results with those obtained by Plessers (1988) using a pre-
dictor-corrector scheme. It was, further, shown by this solution
that linearization would be valid if the excitation amplitude
were to remain within about 5 percent of the nominal static
value of the film thickness (such will give a better measurement
possibility than the 1 percent value used by the authors). More-
over, it may be interesting to gauge the influence of the am-
plitude on the dynamic behavior.

The authors are to be commended for taking particular care
of the restrictor flow model. The passive stiffness (Blondeel
et al., (1980)) of the gas film has always positive damping; the
gap transfer function always negative: the restrictor transfer
function determines the net effect. However, most restrictor
flow formulas, including the one used by the authors, fail to
characterize adequately the complex flow phenomenon around
the feed-hole lumping the problem, in space, at one point and
excluding time dependence. This should be recognized as an
important source of error in the theoretical model (i.e. that
the quasi-static treatment of the restriction flow is only a first
approximation).

As for point (b), viz. by starting from a given structure and
trying to “‘tune”’ it, oneis likely to run into a series of increasing
complications (as is presented in Sec. 5 of the paper). In theory,
if the total system were both damped and deterministic, then
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it would be possible to extract the dynamic characteristics of
its various component parts, in particular that of the test ob-
ject. In practice, however, such conditions cannot always be
insured, especially over a broad frequency range, and the need
to simplify the system always arises. The attempt to compensate
for the various sources of error, in a complex system, e.g. by
accelerometers... etc., cannot provide a satisfactory solution
since such compensation inevitably introduces its own errors
and we may end up by increasing uncertainty rather than re-
ducing it; the answer lies rather in removing or strongly at-
tenuating the very source of error by adoption of a clear and
simple design methodology. Central in such a design, stand
the bearing components and their immediate vicinity that should
be better optimized with respect to mass and geometry. An
excellent treatment of the stability of mechanical structures
containing aerostatic bearings is given in Plessers and Snoeys
(1980) that may prove useful in designing an efficient test
apparatus.

Some remarks about the test apparatus and instrumentation
might not be out of place. First, it is not clear why the authors
treat the system as an axial series of masses and springs (Section
5 and Table 2) whereas Fig. 4 shows that the bearing is con-
nected in parallel with the structure (a series configuration
would be possible only if the bearing were made to support a
free mass load). Furthermore, such an arrangement tends to
make the model 3 dimensional with the possible appearance
of vibration modes, other than the axial ones, but coupled
with them, making the system even more complex than what
is presented in Fig. 5. Bearing preload may also pay a role
here (from our experience), and an experimental verification
of the results of Fig. 5 becomes indispensable, (rather than
verifying the system through the test object itself).

Second, the geometrical accuracy of the system is not dis-
cussed while there seems to be no means of ascertaining par-
allelism of the air gap: two displacement sensors are clearly
not sufficient to establish parallelism. Centrally fed aerostatic
bearings (as our research shows,) have very small tilt stiffness
which decreases (as may intuitively be inferred,) with increasing
dimensionless conicity A,. Tilt is encouraged by the location
of the pivot point high above the bearing surface, which in
turn seems to be dictated by the necessity to include an ac-
celerometer in between. Nor is it clear why LVDT’s, with their
possible ‘‘contact’® phenomena, are preferred to contactless
Sensors.

Last, nothing is mentioned about the repeatability of the
results displayed in Fig. 9 whose reliability is greatly impaired
by their noisy character. The agreement with the theory, as is
also the case with that of Plessers and Snoeys (1988), may be
taken only with reservation, especially the damping values
which are of primary interest. The test apparatus is, in our
opinion, still needy of further modification/qualification, if
not a redesign, in light of this discussion.
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Authors’ Closure

Philips Research has had good contacts with Leuven Uni-
versity in the past (Prof. Snoeys and his graduates Dr. Blon-
deel, Dr. Devrieze, and Dr. Plessers). Now the comments of
the discusser seem to be based on his lack of appreciation of

OCTOBER 1991, Vol. 113/ 775



our work, that only perfects their work. We hope that the
following answers will change his mind.

1. Although we did not attempt to give a design method-
ology for the test apparatus the following two simple starting-
points were used. First we tried to measure load and gap change
of the bearing as close to the bearing as possible. Second, we
designed for a one-dimensional case by assuring the load to
be transmitted through the centerline. The combination of
static and dynamic measurements into one apparatus is a big
advantage because we assure equal settings. We claim a sig-
nificant improvement on Plesser’s apparatus because ours is
simpler, easier to operate and goes up to higher frequencies
for objects with even higher stiffness. We did not aim to design
a general purpose apparatus but it came out to be one, and it
is a cost effective design.

2. The question about dimensionless numbers is an aca-
demic one; on the one hand it makes the results more generally
applicable but on the other hand; it is not appealing to de-
signers, especially due to confusion that arise when everyone
uses his own dimensionless numbers. The feed number A sug-

. gested by the discusser is not applicable here because, his C,

is not a constant and it does not account for transition from
orifice to inherent compensation. Further, we would prefer to
take the minimum gapheight as a reference instead of Agy,
incase they are not equal. Instead of the squeeze number o the
transition time of air through the bearing could be used to
make frequency dimensionless. It is much more natural for
dynamic test purposes to stay with physical units, than char-
acteristic frequencies (like resonances of the measuring setup
or 50/60 Hz peak) are easily recognized. Also we are not
performing a parametric study of bearings here.

3. For us the use of FEM is obvious, first, because we use
a standard package that is completely open for inserting one’s
own elements and that takes care of administration and matrix
solving and second, because FEM can incorporate the restrictor
flow boundary condition in a natural way. We can reassure
Mr. Al-Bender that we did compare our dynamic calculation
results with Dr. Plessers in the past and that these results are
in perfect agreement. We both had no good model for the inlet
restrictor flow at that time so we agreed upon equal gap inlet
pressures.

4. It is certainly not true that the accuracy of linearization
depends on the calculation method. It does depend on the
nonlinearity of the load characteristic at the working point.
For our applications of these bearings their low level vibration
behavior are of interest. We did gauge our measurements by
checking the coherence regularly.

5. Regarding the incorporation of a restrictor flow model
in the analysis we can appreciate the rewarding remark, in fact
we think one must have a reliable model for that flow to be
able to predict the bearing behavior in advance. It is also true
that we did not include any further time dependence in the
flow model but our measurements show good agreement with
the calculations so there is no need to further complicate the
analysis in the frequency range that we investigated. The Blon-
deel terms ‘‘passive stiffness,”” ‘““gap transfer function’ and
“‘restrictor transfer function’’ are not directly applicable to
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our approach, we separate the air film properties from the
structure properties, like Plessers did.

6. The next paragraph has remarks that do not make much
sense to us. Evidently we failed to prove that we already took
care of all the improvements that he has suggested. We do not
compensate for errors, even a mass compensation is not needed
up to 2500 Hz whereas in the Leuven design a big mass is
located in between the bearing and the force transducer that
does need compensation. Our accelerometer is used to accu-
rately measure bearing motion at high frequency. The lumped
model in our Section 5 was intended to explain why we arrived
at such a simple and easy to operate apparatus.

7. We assured the apparatus to be an axial series of masses
and springs by minimizing tilting motions. The air bearings in
the load generator are mainly responsible for that. The big
support structure in Fig. 4 could be misleading but note that
it is only connected to the main device by a tiny string and
only adds useful mass to the base. Furthermore our preload
of the bearing is almost without inertia so we experienced no
problems there, and we did not report on ‘‘verifying”’ the
system through a test object.

8. We did investigate the tilting motion and now we believe
that our adjustment procedure assures good parallel surfaces
and that the friction in the ball pivot is working in our ad-
vantage. We proved this by measuring under several orien-
tations of the ram. The location of the pivot point above the
bearing is a a disadvantage, but it is worse to locate it under-
neath the bearing because of its weakness. We took only two
LVDT’s because with central loads the average of the two gives
the central displacement and we can see whether a significant
tilt exists.

9. The use of LVDT’s is not as bad as it seems. They are
simple, easy to use and have a large linear range. So there is
no need to calibrate for each bearing adjustment. There was
no need to improve on their contact phenomena, by fixing the
stylus to the moving surface and incorporating an airbearing
guide. We do agree that we were surprised by being able to
measure up to 450 Hz.

10. The repeatability of the apparatus is very good. The
measurements were repeated by another person after a com-
plete reassembly and they agreed very well indeed. The noisy
character of the signals in our Fig. 9 in fact proves that we
are honest enough not to use a filter to suggest accuracy. Also,
we used a small scale, which in particular makes the phase
look worse than it is.

11. As one can sense from our reply we feel no need to
redesign our apparatus. The agreement with theory is far better
than in Plessers and Snoeys (1988), especially at high fre-
quencies where our phase goes to zero and their imaginary
part of the stiffness does not.

We still believe we made important progress, both theoret-
ically and experimentally. Theoretically because we incorpo-
rated the restrictor flow in the analysis. Experimentally because
we developed a simple, easy to use test apparatus that can be
used up to higher frequencies for objects with higher stiff-
nesses. The good agreement between calculation and meas-
urement supports that statement.
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